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ABSTRACT: The presented approach to damage identification is a continuation of research done within the
PiezoDiagnostics (PD) project (FP5 EC Project 2001). The general purpose of the PD project was identification
of corrosion (or damage of considerable extent) in pipelines. Generation and detection of a global structural
mode by piezo-actuators and sensors was tested in the PD project. Perturbations of the mode due to various
damage scenarios were investigated. A software tool, based on the Virtual Distortion Method (VDM), was
developed (Kołakowski, Zieliński, and Holnicki-Szulc 2004). The tool is able to perform damage identification
via the solution of an inverse, dynamic problem in time domain thanks to employing gradient-based optimiza-
tion. A well-calibrated FE model is required for the approach in order to produce meaningful results with
experimental data. In this paper, the possibility of carrying out the damage identification in frequency domain
will be explored. A dynamic problem with no damping will be considered first. A number of selected excitation
frequencies will be the subject of analysis. Steady-state dynamic responses will be provoked and static-like
influence matrices in the framework of VDM will be built accordingly. As a consequence, the optimization pro-
cess in frequency domain is expected to be significantly faster compared to the one analyzed previously in time
domain. The newly formulated approach mainly reduces the vast consumption of computational time, observed
in the previous approach.

1 INTRODUCTION

The damage detection systems based on array of
piezoelectric transducers sending and receiving strain
waves have been intensively discussed by researchers
recently. The signal-processing problem is the cru-
cial point in this concept and a neural network based
method is one of the most often suggested approaches
to develop a numerically efficient solver for this prob-
lem.

An alternative approach to the inverse dynamic
analysis problem is based on the dynamic VDM (Vir-
tual Distortion Method) concept, making use of a dy-
namic influence matrixD. Pre-computation of the
time-dependent matrixD allows for decomposition
of the dynamic structural response into components
caused by external excitation in undamaged structure
(the linear part) and components describing pertur-
bations caused by the internal defects (the non-linear
part). As a consequence, analytical formulas for cal-
culation of these perturbations and the correspond-
ing gradients can be derived. The physical meaning
of the virtual distortions used in this paper are exter-
nally induced strains (non-compatible in general, e.g.

caused by piezoelectric transducers, similarly to the
effect of non-homogeneous heating). The compatible
strains and self-equilibrated stresses are structural re-
sponses to these distortions.

Assuming possible locations of all potential defects
in advance, an optimization technique with analyti-
cally calculated gradients can be applied to solve the
problem of the most probable defect locations. The
considered damage can affect the local stiffness as
well as the mass distribution modification. It is pos-
sible to identify the position as well as intensity of
several, simultaneously generated defects.

The proposed methodology can be applied e.g. to
corrosion detection (reduction of material thickness),
and identification of its location in steel pipelines,
using long-distance transmissions of impulses. This
time-domain-based methodology of data processing
for damage identification (VDM based PD-software,
cf. Ref. (Kołakowski, Zielínski, and Holnicki-Szulc
2004;Świercz and Zielínski 2004) fits well to the fol-
lowing technique of measurements (PD-hardware):

i) wave generator produces a low frequency im-
pulse of flexural wave with long-distance prop-
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agation,

ii) few well located, distanced sensors collect mea-
surements of frontal section of the transferred
wave,

iii) if the received structural response differs signif-
icantly from the reference response (for undam-
aged structure), the collected measurements are
transmitted to a computer centre for further data
processing (damage identification).

There is a class of problems where a concept similar
to the above-mentioned VDM approach, but based on
frequency-domain rather than time-domain response
can be applied. This numerically economical method
can be addressed to problems, where steady-state re-
sponse can be the basis of dynamic analysis. For ex-
ample, the following tasks can be solved on the ba-
sis of the VDM-F (Virtual Distortion Method in Fre-
quency Domain) method:

– remodelling of vibrating system with harmonic
excitation in order to reduce vibrations in a se-
lected area,

– identification of material/structural properties on
the basis of monitored structural responses for
samples of harmonic excitations,

– detection and identification of damages (via in-
verse dynamic problem) on the basis of mon-
itored structural responses for samples of har-
monic excitations.

The objective of this paper is to investigate the third
of the above-mentioned problems.

2 PROBLEM FORMULATION
In order to present basic formulas of the VDM-F
method, let us focus on quick remodelling of vibrating
truss structures under harmonic excitation. Having an
existing structure and its parameters we could intro-
duce some modifications to those parameters and then
calculate its response, i.e. displacements and internal
forces of the modified structure. The general form of
equations of motion for a multi-degree of freedom
case is given as follows:

Mü(t) + Cu̇(t) + Ku(t) = f(t), (1)

whereM, C andK are mass, damping and stiffness
matrices, respectively andf(t) is the vector of exter-
nal forces. Each of the above-mentioned matrices rep-
resents a set of parameters, which can be modified in
the following way:

M̂ ü(t) + Ĉ u̇(t) + K̂u(t) = f(t), (2)

where M̂ = M + ∆M, Ĉ = C + ∆C, K̂ = K +
∆K describe modifications of the mass, damping and
stiffness matrices, respectively. The modification pa-
rameters cause non-linear variations of the mass as
well as stiffness matrix, which influence the struc-
tural responseu. The VDM-F based formulation al-
lows to calculate this response quickly (for modi-
fied structure) for given (modified) structural parame-
ters. Knowing the responses for original and modified
structure, the damage identification process leads to
multiple re-computations of dynamic responses with
imposed modifications on original structure. This pa-
per is concentrated on the remodelling problem ne-
glecting the damping component.

3 VIRTUAL DISTORTION IN FREQUENCY DO-
MAIN

From now on, it is assumed that the structure is sub-
jected to a harmonic excitation. Substituting Equa-
tion:

f(t) = f sin(ωt), (3)

to Equation 1 and 2, the expected responseu can be
written in the following form:

u(t) = u sin(ωt). (4)

Modifications of stiffness and mass distribution are
modelled byvirtual distortionsdenoting initial strains
in structural elements and virtual forces in structural
nodes, oscillating with the same frequency as external
excitation:

ε0(t) = ε0 sin(ωt), p0(t) = p0 sin(ωt), (5)

where the first quantity models stiffness, while the
second one the mass redistributions, respectively.
Let us call themodified structure— a structure in
which changes were introduced to the mass and stiff-
ness matrix and themodelled structure— a struc-
ture in which changes are modelled by virtual dis-
tortions, without changing mass and stiffness matri-
ces. The equations of motion for the modified and
modelled structures can be obtained introducing vir-
tual distortion component(s) and substituting quan-
tities for steady-state problem (Equations 3, 4, 5)
(cf. (Holnicki-Szulc, Pawłowski, and Wikło 2003)) to
Equations 1 and 2.

−ω2M̂ijuj +GαiŜαβGβjuj =fi, (6)

−ω2Mijuj +GαiSαβLβ(εβ − ε0
β) =fi + p0

i . (7)

where,Ŝαβ andSαβ are diagonal matrices witĥSαα =

EαÂα/lα andSαα = EαAα/lα, respectively (Eα —
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Young’s modulus,Aα — cross section (̂Aα modified)
and lα length of an elementα), Lβ — is a vector of
lengths of structural elements. In the Equation 6 (and
next formulas) there is no summation over underlined
indices. The Greek letters run over structural elements
and the Latin ones are related to degrees of freedom of
a considered structure. The matrixGαi is a transfor-
mation matrix, whose elements are related to cosines
of angles between elements and directions of degrees
of freedom. In the Equation 6, 7, the time-dependent
components have been eliminated. The displacement
depends only on the frequency and the amplitude can
be decomposed as follows:

ui = uLi +Dε
iαε

0
α +Dp

ik p
0
k, (8)

where:Dε
iα — influence matrix denoting amplitude

of displacementui generated by unit, harmonic strain
distortion with amplitudeε0

α = 1 of frequencyω ap-
plied in elementα. Matrix Dp

ij — influence matrix
denoting amplitude of displacementui generated by
unit, harmonic force with amplitudep0

i = 1 of fre-
quencyω applied inj-th degree of freedom.

It is postulated that response of the structure mod-
elled by virtual distortions has to be identical with
the response of the modified structure. Therefore, for
each element, which is modified, the compatibility of
strains and stresses is required:

Pα = EαÂα εα = EαAα
(
εα − ε0

α

)
. (9)

Assuming that the cross sections of structural ele-
ments are modified, the vector of stiffness modifica-
tion can be expressed as follows:

µα =
Âα
Aα

=
εα − ε0

α

εα
. (10)

The vectorµα is the vector of structural modification,
which involves modification of the mass as well as
stiffness matrix. The updated vector of strainεα can
be obtained through multiplying Eqn (8) by1

Lα
Gαi:

εα = εLα +Bε
αβ ε

0
β +Bp

αk p
0
k. (11)

where:

Bε
αβ =

1

Lα
GαiD

ε
iβ, Bp

αk =
1

Lα
GαiD

p
ik. (12)

Substituting Equation 11 to Equation 10, the first (of
two) relation between the vector of stiffness modifi-
cationµα and virtual distortionsε0

α andp0
i can be de-

termined:

[
(µα − 1)Bε

αβ + δαβ
]
ε0
β + (µα − 1)Bp

αk p
0
k =

(1− µα) ε
L
α. (13)

Equation 13 contains two kinds of virtual distortions
ε0
α andp0

k. In order to determine those distortions, let
us determine the second relationship from Equation 6
and 7:

p0
i = ω2(M̂ij −Mij)uj = ω2∆Mij uj, (14)

whereui is described by Equation 8. Let us assume
(for simplicity) the diagonal mass matricesMij and
M̂ij. Their difference can be determined as follows:

∆Mij =
1

2

∑
α

(µα − 1)ραAαlαM
(α)
ij , (15)

where aαir determines relation between degrees of
freedom of a finite elementα (indices r, s) and
degrees of freedom of the whole structure and
1
2
ραAαlαM

(α)
ij is the global mass matrix calculated

for a structural elementα. Thus, let us substitute the
Equation 15 into the Equation 14:

− ω2∆Mij(µα)D
ε
jβε

0
β +

(−ω2∆Mij(µα)Djk + δik
)
p0
k =

ω2∆Mij(µα)u
L
j . (16)

Finally, the formula for determining virtual distor-
tionsε0

β andp0
k, taking into account Equation 13 and

16, can be written:

Ad0 =bL, (17)

where:A11 = (µα − 1)Bε
αβ + δαβ,

A12 = (µα − 1)Bp
αk, A21 = −ω2∆Mij(µα)D

ε
jβ,

A22 = −ω2∆Mij(µα)D
p
jk + δik,

bL1 = (1− µα)ε
L
α, bL2 = ω2∆Mij(µα)u

L
j .

The virtual distortionsε0
α and p0

k obtained from the
above set of equations model modification of cross
section areaAα (see Equation 10) of structural ele-
ments. Using Equation 8 (or Equation 11) the dis-
placements field (strain field) can be quickly calcu-
lated. It was presented in (Świercz, Kołakowski, and
Holnicki-Szulc 2005) how the VDM models response
of the modified structure.

4 DAMAGE IDENTIFICATION TECHNIQUE
The result of the damage identification indicate the
severity of damaged structural element(s) and their lo-
cation. This inverse problem leads to minimization of
a suitable objective function. The objective function
has to depend on structural modification parameters
to be detected. The accuracy of the result is related
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with the number of measured responses (sensors). Let
us propose the objective function as follows:

f = (εψ − εMψ )(εψ − εMψ ), (18)

whereεψ = εψ(µϑ) is the vector of strain in the con-
sidered structure with internal (unknown) defectsµϑ
modelled by virtual distortions (ε0

α, p0
i ) andεMψ is the

measured response — in this case obtained numeri-
cally — of the damaged structure. In the above for-
mula indexψ runs over selected structural elements.
To minimize the objective function (Equation 18), the
steepest descent method can be used. To this end, let
us calculate the gradient of the objective function∂f

∂µϑ
:

∂f

∂µϑ
= ∇ϑf =

∂f

∂εψ

∂εψ
∂ε0

α

∂ε0
α

∂µϑ
+
∂f

∂εψ

∂εψ
∂p0

i

∂p0
i

∂µϑ
. (19)

In the Equation 19 the distortion gradients can be de-
termined through differentiation from Equation 23.
The partial derivatives∂εψ

∂ε0α
and ∂εψ

∂p0i
can be obtained

through differentiation of Equation 11, accounting for
Equation 12:

∂εψ
∂ε0

α

= Bε
ψα,

∂εψ
∂p0

i

= Bp
ψi. (20)

In order to determine gradients
∂ε0β
∂µϑ

and ∂p0i
∂µϑ

let us dif-
ferentiate Equation 13 and 16, respectively:

[
(µα − 1)Bε

αβ + δαβ
] ∂ε0

β

∂µϑ
+

(µα − 1)Bp
αk

∂p0
k

∂µϑ
= −δαϑεα, (21)

− ω2∆MijD
ε
jβ

∂ε0
β

∂µϑ
+

+
[−ω2∆MijDjk + δik

] ∂p0
k

∂µϑ
= ω2M

(ϑ)
ij uj. (22)

Similarly to the Eqn (17), the set of equations con-
cerning distortion gradients with respect to the vector
of modification parameters is given as follows:

Ag0 = b, (23)

where the matrix A is the same as in
Eqn (17), moreover: g0

1 =
∂ε0β
∂µϑ

, g0
2 =

∂p0k
∂µϑ

,

b1 = δαϑ
(
εLα +Bε

αβε
0
β +Bp

αjp
0
j

)
,

b2 = 1
2
ω2ρϑAϑlϑM

(ϑ)
ij

(
uLj +Dε

jβε
0
β +Dp

jkp
0
k

)
.

Having calculated distortion gradients, the gradient-
based formulation for damage identification can be
applied.
Now, the gradient of the objective function can be ex-
pressed as follows:

∇ϑf = 2
(
εψ − εMψ

)[
Bε
ψβ

∂ε0
β

∂µϑ
+Bp

ψk

∂p0
k

∂µϑ

]
. (24)

The vector of modification parameters is determined
iteratively according to the formula:

µ(s+1)
α = µ(s)

α −∆f (s) ∇αf
(s)

[∇αf (s)]
T ∇αf (s)

, (25)

with a priori assumed original vector of modification
parametersµ(0)

ϑ (eg. for undamaged structure), where
s denotes the current iteration,s+ 1 the next one and
the step length∆ is appropriately selected from the
interval(0,1).

5 NUMERICAL EXAMPLES
In this section some results will be presented illus-
trating the methodology for the damage identifica-
tion. Let us consider the simple truss-structure shown
in Figure 1. It is subjected to harmonic loadF =
200 sin(ωt) in nodal point9 with applied fraquency
ω = 1000 [ rad

s
]. All elements of the original struc-

ture have the same parameters: Young’s modulusE =
210GPa, cross section areaA = 10−5m2, density
7800 kg

m3 . Width and height of the single section is
equal1m. For the inverse analysis it is assumed, that
measurements (strain response) are collected from se-
lected or all elements. The damage is defined accord-
ing to Equation 10 and the dimensionless cross sec-
tion areas (µi) are iteratively calculated. The results
are presented after100 and500 iterations. In our in-
vestigation 3 cases of the inverse analysis are consid-
ered:

1. measurements are colected from sectionsIII
andIV (elements11− 20) — one defect to de-
tect in the whole structure, thus the indexψ in
Equation 18 run over elements in sectionsIII
andIV , and the indexϑ in Equation 24 run over
all structural elements (1 − 20). The collected
data for original structure and for the modified
one are given in the Table 2. The results of the
inverse analysis is shown in the Figure 2.

2. measurements are collected from all sections —
three defects to detect in all sections. The iden-
tified cross section areasµi are presented in the
Figure 3.
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Figure 1: Tested truss structure.

Table 1: The collected data: damage case 3.
Element’s numberStrain’s

amplitude 16 17 18 19 20

εα[×10−5]
(orginal) 8.086 −6.663 6.004 4.398 −7.092

εMα [×10−5]
(modified) 12.729 −7.826 9.521 11.596 −10.393

16 17 18 19 20
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i

element number

n=100 iterations
n=500 iterations
true stiffness

Figure 4: Results of the inverse analysis: damage
case 3.

3. measurements are colected from sectionIV (el-
ements16− 20). In this case the distribution of
defects (µi) in the IV section have to be deter-
mined based on responses from this section. The
collected responses are shown in the Table 1.

The convergence of the objective function (cf.
Equation 18) during the inverse analysis depends on
the number of sensors and the number of cross section
areas modificationsµi to be determined. Concluding,
the more sensors is used the less iterations have to be
done to solve the problem.

It is important to notice that the presented results
were obtained for excitation acting in one selected
frequencyω. An extention of the set of excitations al-

lows to expect, that the presented methogology will
be more efficient.

6 SUMMARY AND CONCLUSION
The Virtual Distortion Method in frequency domain
(VDM-F) is an useful tool to investigate steady-state
problems. Static-like influence matrices are built only
once for each frequency. This allows to identify mul-
tiple defects.

The presented damage identification methodology
requires comparison of the reference response(s) (re-
ferring to the undamaged structure) and the damaged
one. The optimization process in frequency domain
based on VDM-F is expected to be significantly faster
compared to the one analyzed in time domain.
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